FreeQAs
 Request Exam  Contact
  • Home
  • View All Exams
  • New QA's
  • Upload
PRACTICE EXAMS:
  • Oracle
  • Fortinet
  • Juniper
  • Microsoft
  • Cisco
  • Citrix
  • CompTIA
  • VMware
  • SAP
  • EMC
  • PMI
  • HP
  • Salesforce
  • Other
  • Oracle
    Oracle
  • Fortinet
    Fortinet
  • Juniper
    Juniper
  • Microsoft
    Microsoft
  • Cisco
    Cisco
  • Citrix
    Citrix
  • CompTIA
    CompTIA
  • VMware
    VMware
  • SAP
    SAP
  • EMC
    EMC
  • PMI
    PMI
  • HP
    HP
  • Salesforce
    Salesforce
  1. Home
  2. ISTQB Certification
  3. CT-AI Exam
  4. ISTQB.CT-AI.v2025-01-01.q14 Dumps
  • «
  • 1
  • 2
  • 3
  • 4
  • »
Download Now

Question 1

"BioSearch" is creating an Al model used for predicting cancer occurrence via examining X-Ray images. The accuracy of the model in isolation has been found to be good. However, the users of the model started complaining of the poor quality of results, especially inability to detect real cancer cases, when put to practice in the diagnosis lab, leading to stopping of the usage of the model.
A testing expert was called in to find the deficiencies in the test planning which led to the above scenario.
Which ONE of the following options would you expect to MOST likely be the reason to be discovered by the test expert?
SELECT ONE OPTION

Correct Answer: A
The question asks which deficiency is most likely to be discovered by the test expert given the scenario of poor real-world performance despite good isolated accuracy.
A lack of similarity between the training and testing data (A): This is a common issue in ML where the model performs well on training data but poorly on real-world data due to a lack of representativeness in the training data. This leads to poor generalization to new, unseen data.
The input data has not been tested for quality prior to use for testing (B): While data quality is important, this option is less likely to be the primary reason for the described issue compared to the representativeness of training data.
A lack of focus on choosing the right functional-performance metrics (C): Proper metrics are crucial, but the issue described seems more related to the data mismatch rather than metric selection.
A lack of focus on non-functional requirements testing (D): Non-functional requirements are important, but the scenario specifically mentions issues with detecting real cancer cases, pointing more towards data issues.
Reference:
ISTQB CT-AI Syllabus Section 4.2 on Training, Validation, and Test Datasets emphasizes the importance of using representative datasets to ensure the model generalizes well to real-world data.
Sample Exam Questions document, Question #40 addresses issues related to data representativeness and model generalization.
insert code

Question 2

Which ONE of the following describes a situation of back-to-back testing the LEAST?
SELECT ONE OPTION

Correct Answer: C
Back-to-back testing is a method where the same set of tests are run on multiple implementations of the system to compare their outputs. This type of testing is typically used to ensure consistency and correctness by comparing the outputs of different implementations under identical conditions. Let's analyze the options given:
A . Comparison of the results of a current neural network model ML model implemented in platform A (for example Pytorch) with a similar neural network model ML model implemented in platform B (for example Tensorflow), for the same data.
This option describes a scenario where two different implementations of the same type of model are being compared using the same dataset. This is a typical back-to-back testing situation.
B . Comparison of the results of a home-grown neural network model ML model with results in a neural network model implemented in a standard implementation (for example Pytorch) for the same data.
This option involves comparing a custom implementation with a standard implementation, which is also a typical back-to-back testing scenario to validate the custom model against a known benchmark.
C . Comparison of the results of a neural network ML model with a current decision tree ML model for the same data.
This option involves comparing two different types of models (a neural network and a decision tree). This is not a typical scenario for back-to-back testing because the models are inherently different and would not be expected to produce identical results even on the same data.
D . Comparison of the results of the current neural network ML model on the current data set with a slightly modified data set.
This option involves comparing the outputs of the same model on slightly different datasets. This could be seen as a form of robustness testing or sensitivity analysis, but not typical back-to-back testing as it doesn't involve comparing multiple implementations.
Based on this analysis, option C is the one that describes a situation of back-to-back testing the least because it compares two fundamentally different models, which is not the intent of back-to-back testing.
insert code

Question 3

Which ONE of the following statements is a CORRECT adversarial example in the context of machine learning systems that are working on image classifiers.
SELECT ONE OPTION

Correct Answer: D
A . Black box attacks based on adversarial examples create an exact duplicate model of the original.
Black box attacks do not create an exact duplicate model. Instead, they exploit the model by querying it and using the outputs to craft adversarial examples without knowledge of the internal workings.
B . These attack examples cause a model to predict the correct class with slightly less accuracy even though they look like the original image.
Adversarial examples typically cause the model to predict the incorrect class rather than just reducing accuracy. These examples are designed to be visually indistinguishable from the original image but lead to incorrect classifications.
C . These attacks can't be prevented by retraining the model with these examples augmented to the training data.
This statement is incorrect because retraining the model with adversarial examples included in the training data can help the model learn to resist such attacks, a technique known as adversarial training.
D . These examples are model specific and are not likely to cause another model trained on the same task to fail.
Adversarial examples are often model-specific, meaning that they exploit the specific weaknesses of a particular model. While some adversarial examples might transfer between models, many are tailored to the specific model they were generated for and may not affect other models trained on the same task.
Therefore, the correct answer is D because adversarial examples are typically model-specific and may not cause another model trained on the same task to fail.
insert code

Question 4

Max. Score: 2
Al-enabled medical devices are used nowadays for automating certain parts of the medical diagnostic processes. Since these are life-critical process the relevant authorities are considenng bringing about suitable certifications for these Al enabled medical devices. This certification may involve several facets of Al testing (I - V).
I . Autonomy
II . Maintainability
III . Safety
IV . Transparency
V . Side Effects
Which ONE of the following options contains the three MOST required aspects to be satisfied for the above scenario of certification of Al enabled medical devices?
SELECT ONE OPTION

Correct Answer: C
For AI-enabled medical devices, the most required aspects for certification are safety, transparency, and side effects. Here's why:
Safety (Aspect III): Critical for ensuring that the AI system does not cause harm to patients.
Transparency (Aspect IV): Important for understanding and verifying the decisions made by the AI system.
Side Effects (Aspect V): Necessary to identify and mitigate any unintended consequences of the AI system.
Why Not Other Options:
Autonomy and Maintainability (Aspects I and II): While important, they are secondary to the immediate concerns of safety, transparency, and managing side effects in life-critical processes.
insert code

Question 5

Pairwise testing can be used in the context of self-driving cars for controlling an explosion in the number of combinations of parameters.
Which ONE of the following options is LEAST likely to be a reason for this incredible growth of parameters?
SELECT ONE OPTION

Correct Answer: C
Pairwise testing is used to handle the large number of combinations of parameters that can arise in complex systems like self-driving cars. The question asks which of the given options is least likely to be a reason for the explosion in the number of parameters.
Different Road Types (A): Self-driving cars must operate on various road types, such as highways, city streets, rural roads, etc. Each road type can have different characteristics, requiring the car's system to adapt and handle different scenarios. Thus, this is a significant factor contributing to the growth of parameters.
Different Weather Conditions (B): Weather conditions such as rain, snow, fog, and bright sunlight significantly affect the performance of self-driving cars. The car's sensors and algorithms must adapt to these varying conditions, which adds to the number of parameters that need to be considered.
ML Model Metrics to Evaluate Functional Performance (C): While evaluating machine learning (ML) model performance is crucial, it does not directly contribute to the explosion of parameter combinations in the same way that road types, weather conditions, and car features do. Metrics are used to measure and assess performance but are not themselves variable conditions that the system must handle.
Different Features like ADAS, Lane Change Assistance, etc. (D): Advanced Driver Assistance Systems (ADAS) and other features add complexity to self-driving cars. Each feature can have multiple settings and operational modes, contributing to the overall number of parameters.
Hence, the least likely reason for the incredible growth in the number of parameters is C. ML model metrics to evaluate the functional performance.
Reference:
ISTQB CT-AI Syllabus Section 9.2 on Pairwise Testing discusses the application of this technique to manage the combinations of different variables in AI-based systems, including those used in self-driving cars.
Sample Exam Questions document, Question #29 provides context for the explosion in parameter combinations in self-driving cars and highlights the use of pairwise testing as a method to manage this complexity.
insert code
  • «
  • 1
  • 2
  • 3
  • 4
  • »
[×]

Download PDF File

Enter your email address to download ISTQB.CT-AI.v2025-01-01.q14 Dumps

Email:

FreeQAs

Our website provides the Largest and the most Latest vendors Certification Exam materials around the world.

Using dumps we provide to Pass the Exam, we has the Valid Dumps with passing guranteed just which you need.

  • DMCA
  • About
  • Contact Us
  • Privacy Policy
  • Terms & Conditions
©2025 FreeQAs

www.freeqas.com materials do not contain actual questions and answers from Cisco's certification exams.