Given the code:
df = spark.read.csv("large_dataset.csv")
filtered_df = df.filter(col("error_column").contains("error"))
mapped_df = filtered_df.select(split(col("timestamp"), " ").getItem(0).alias("date"), lit(1).alias("count")) reduced_df = mapped_df.groupBy("date").sum("count") reduced_df.count() reduced_df.show() At which point will Spark actually begin processing the data?
A data engineer is building an Apache Spark™ Structured Streaming application to process a stream of JSON events in real time. The engineer wants the application to be fault-tolerant and resume processing from the last successfully processed record in case of a failure. To achieve this, the data engineer decides to implement checkpoints.
Which code snippet should the data engineer use?
A data engineer is running a Spark job to process a dataset of 1 TB stored in distributed storage. The cluster has 10 nodes, each with 16 CPUs. Spark UI shows:
Low number of Active Tasks
Many tasks complete in milliseconds
Fewer tasks than available CPUs
Which approach should be used to adjust the partitioning for optimal resource allocation?
What is the benefit of using Pandas on Spark for data transformations?
Options:
A developer notices that all the post-shuffle partitions in a dataset are smaller than the value set forspark.sql.
adaptive.maxShuffledHashJoinLocalMapThreshold.
Which type of join will Adaptive Query Execution (AQE) choose in this case?
Enter your email address to download Databricks.Associate-Developer-Apache-Spark-3.5.v2025-11-20.q72 Dumps